
Lecture 1:
Introduction

CS 351: Systems Programming
Melanie Cornelius

Slides and course content obtained with permission
from Prof. Michael Lee, <lee@iit.edu>

Melanie Cornelius

B.S. in physics (2016) from IIT
M.S. in CS (2018) from IIT
Currently finishing Ph.D. at the University of Illinois at
Chicago

- melanie.e.cornelius@gmail.com

- http://www.mseryn.com

- Office hours: by appointment

Introductions

- Syllabus & Administration

- Course overview (“Systems
Programming”)

Agenda

Syllabus

- “substantial” programming experience

- data structures: concepts & implementation

- basic run-time analysis (big O)

- knowledge of (any) assembly language

- computer organization essentials

Prerequisites

- computer organization essentials:

- data representation (binary, two’s comp,
f.p. inaccuracy, etc.)

- von Neumann model

- CPU, memory, I/O

- stack usage / conventions

1. Course website (posted later today):
www.mseryn.com/teaching/cs351

- static information

- lecture calendar, assignment writeups,
slides, screencasts, links, etc.

Online resources

2. Blackboard

- grade spreadsheet

- online exams

Online resources

3. Vimeo channel:
 Prof. Michael Lee

- vimeo.com/channels/cs351

- walkthroughs & tutorials
(check before starting labs!)

Online resources

http://vimeo.com/channels/cs351

1. Piazza:
a. peer support / discussion

2. Calendy:
a. Scheduling for office hours
b. text/audio chat + screensharing

Online resources

Textbooks

Grading
● 40% Labs
● 25% Midterm exam
● 25% Final exam
● 10% Participation

Our TA
Lang Liu, M.S. student at IIT

● lliu94@hawk.iit.edu

● Office Hour: Saturday, 6:00 am - 7:00 am CST
○ In China: Saturday 19:00 pm to 20:00 pm

● Student Q&A and Support Session:

Friday, 6:45 am - 7:00 am

mailto:lliu94@hawk.iit.edu

Grade Scale
char letter_grade(float score) {
 if (score >= 90.0) return 'A';
 else if (score >= 80.0) return 'B';
 else if (score >= 70.0) return 'C';
 else if (score >= 60.0) return 'D';
 else return 'E';
}

Labs
- 5-7 fairly substantial machine problems

- real-world application of concepts covered in
lecture & textbook

- pre-recorded presentation components likely

Labs
- late policy:

- 6 flexible late days (FLDs) / semester
- To use, email Prof. Cornelius (no reason

necessary), cc the TA
- Only 2 per-lab are permitted
- 20% / day late penalty otherwise

Participation
- Expected to participate in Piazza discussions

- In addition to course questions/discussions,
- Each student will be given a specific

assignment on a rotation to post in Piazza
- Details given next week

- Expected to attend lectures and contribute to
polls during class

Exams
- Midterm TBA

- Final exam is nominally cumulative

- Scores may be linearly scaled so that
median/mean (whichever lower) is 70%

Course Overview

“Systems
Programming”

system |ˈsistəm|
noun
1 a set of connected things or parts
forming a complex whole

(New Oxford American Dictionary)

“Systems
Programming”

- Programming the operating system

- What does that mean?

OS vs. OS kernel
- OS kernel ≈ smallest subset of OS code

needed to bootstrap system and provide
basic services to user programs

- “smallest” is debatable

How to “program” it?
- Require some API (Application

Programming Interface)

- A collection of (documented) functions

- e.g., get/put/del for a hashtable

OS API
- a.k.a. “system call” interface

- OS as a very low-level library

- common purpose: provide services to user
level programs

- def: program in execution = process

The Process
- A program in execution

- Code + Data { global, local, dynamic }

+ OS kernel data

- OS hides complexity of machine from
processes by creating abstractions

http://xkcd.com/

“Abstraction”

http://xkcd.com

Primary Abstractions
- Logical control flow

- Exceptional (extra-process) control flow

- Logical address space

- “I/O” (via uniform APIs)

- Interprocess Communication

- … every program had to include its own
implementation of all the above!

- Now, OS simplifies life for all of us.

- Only need to know how to use them, not
how they’re implemented.

In the old days …

But!
- In this class we dig a bit deeper

- What facilities are encapsulated by
syscalls?

- What limitations/restrictions do they have?

- Why are they designed the way they are?

- How do they work behind the scenes?

But why should I care?

- efficiency: know how to use tools
optimally; reuse existing features and
design/layer new ones appropriately

- robustness: avoid bugs/failures & know
how to diagnose and fix them

the real reason: it’s fun to take things apart!

goal: turn you into a
hacker

(or: make you a better hacker)

The Jargon File, version 4.4.7

hacker |ˈhakər|
noun
1 A person who enjoys exploring the details of
programmable systems and how to stretch their
capabilities, as opposed to most users, who prefer to
learn only the minimum necessary.

Our tools (&
approach)

- C & Linux

- C: low-level language

- GNU Linux: open source kernel & tools

- GNU gdb & gcc; debugger & compiler

Fourier
- All labs must be tested and submitted on the

class Linux server: fourier.cs.iit.edu

- You will receive an e-mail with account info

- If off-campus, must connect via IIT VPN

- Log in via SSH client

http://fourier.cs.iit.edu

Git & GitHub
- All labs are distributed using Git via

GitHub

- Distributed VCS + platform

- Typical workflow:

Git & GitHub

1. accept invitation and get a private copy of
the assignment repo

2. clone repo on fourier
3. work on assignment
4. submit via commit & push

Summary
- Watch for invites to:

- Piazza
- IIT VPN
- Fourier
- GitHub

- Check out the course website:
mseryn.com/cs351 for any concerns

- Any questions? Use Piazza!

