
C Primer part 2
CS 351: Systems Programming
Melanie Cornelius

Slides and course content obtained with permission
from Prof. Michael Lee, <lee@iit.edu>

Pointers

(don’t panic!)

a pointer is a variable declared
to store a memory address

what’s a memory address?
-an address that can refer to a datum
in memory

-given address size w, range = 0 to 2w-1
-width determined by machine word size

-e.g., 32-bit machine → 32-bit address

e.g., for word size = 32, the following are valid
memory addresses:

-0

-100

-0xABCD1234

-0xFFFFFFFF

i.e., an address is just a number

Q: by examining a variable’s contents,
can we tell if the variable is a pointer?

0x0040B100

No!

-a pointer is designated by its static
(declared) type, not its contents

A pointer declaration also tells us the
type of data to which it should point

declaration syntax:

type *var_name

(ex 1)

struct student *sp;

int *ip

char *cp;

int

char

struct student

Important pointer-related operators:

& :address-of (reference)

* : value-at (dereference)

int i = 5; /* i is an int containing 5 */
int *p; /* p is a pointer to an int */

p = &i; /* store the address of i in p */

int j; /* j is an uninitialized int */
j = *p; /* store the value p points to into j*/

(ex 2)

int i, j, *p, *q;
i = 10; p = &j; q = p;

*q = i; *p = *q * 2;

$ gcc pointers.c
$./a.out
i=10, j=20, *p=20, *q=20

int main() {
 int i, j, *p, *q;

 i = 10;
 p = &j;
 q = p;
 *q = i;
 *p = *q * 2;
 printf("i=%d, j=%d, *p=%d, *q=%d\n", i, j, *p, *q);
 return 0;
}

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

why have pointers?

int main() {
 int a = 5, b = 10;
 swap(a, b);
 /* want a == 10, b == 5 */
 ...
}

void swap(int x, int y) {
 int tmp = x;
 x = y;
 y = tmp;
}

Pass by value!

int main() {
 int a = 5, b = 10;
 swap(&a, &b);
 /* want a == 10, b == 5 */
 ...
}

void swap(int *p, int *q) {
 int tmp = *p;
 *p = *q;
 *q = tmp;
}

(ex 3)

pointers enable action at a distance

action at a distance is an anti-pattern

i.e., an oft used but typically crappy
programming solution

$ gcc pointers.c
pointers.c: In function ‘main’:
pointers.c:10: warning: passing argument 1 of ‘swap’ from
incompatible pointer type
pointers.c:10: warning: passing argument 2 of ‘swap’ from
incompatible pointer type

void swap(int *p, int *q) {
 int tmp = *p;
 *p = *q;
 *q = tmp;
}

int main() {
 int a, b, *c = &a, *d = &b;

 swap(&c, &d);
 /* want c to point to b, d to a */
}

Swapping pointers?

int ** declares a
pointer to a pointer to an int

void swapp(int **p, int **q) {
 int *tmp = *p;
 *p = *q;
 *q = tmp;
}

int main() {
 int a, b, *c = &a, *d = &b;

 swapp(&c, &d);
 /* want c to point to b, d to a */
}

(ex 4)

- are like all other uninitialized variables

- i.e., contain garbage

- dereferencing garbage ...

- if lucky → crash

- if unlucky → ???

Uninitialized pointers

“Null” pointers
- never returned by & operator

- safe to use as sentinel value (ex, before
variable usefully populated)

- written as 0 in pointer context

- for convenience, #define’d as NULL

Arrays and Arithmetic

Array:
contiguous, indexed region of memory

Declaration:

type arr_name[size]

-remember, declaration also
allocates storage!

int i_arr[10]; /* array of 10 ints */
char c_arr[80]; /* array of 80 chars */
char td_arr[24][80]; /* 2-D array, 24 rows x 80 cols */
int *ip_arr[10]; /* array of 10 pointers to ints */

/* dimension can be inferred if initialized when declaring */
short grades[] = { 75, 90, 85, 100 };

/* can also use designated initializers for specific indices*/
int nifty[100] = { [0] = 0,
 [99] = 1000,
 [49] = 250 };

/* if partially initialized, remaining components are 0 */
int zeros[1000] = { 0 };

/* can only omit first dim, as partial initialization is ok */
int sparse[][10] = { { 5, 3, 2 },
 { 8, 10 },
 { 2 } };

(ex 5)

In C, arrays contain no metadata

i.e., no implicit size, no bounds
checking

direct access to memory can be
dangerous!

pointers ♥ arrays

-an array name is bound to the
address of its first element

-i.e., array name is a const pointer

-conversely, a pointer can be used
as though it were an array name

(ex 6)

int arr[100];

int *pa = arr;

pa[10] = 0; /* set tenth element */

/* so it follows ... */

(pa + 10) = 0; / set tenth element */

/* surprising! "adding" to a pointer
 accounts for element size -- does not
 blindly increment address */

int arr[100];
arr[10] = 0xDEADBEEF;

char *pa = (char *)arr;

pa[10] = 0;

printf("%X\n", arr[10]);

$./a.out
DEADBEEF

int arr[100];
arr[10] = 0xDEADBEEF;

char *pa = (char *)arr;

int offset = 10 * sizeof (int);

*(pa + offset) = 0;

printf("%X\n", arr[10]);

$./a.out
DEADBE00

sizeof: an operator to get the
size in bytes

-can be applied to a datum or
type

int arr[100];
arr[10] = 0xDEADBEEF;

char *pa = (char *)arr;

int offset = 10 * sizeof (int);

*(int *)(pa + offset) = 0;

printf("%X\n", arr[10]);

$./a.out
0

strings are just 0 terminated char arrays

char str[] = "hello!";
char *p = "hi";
char tarr[][5] = {"max", "of", "four"};
char *sarr[] = {"variable", "length", "strings"};

(gdb) x /7x str
0x7fffffffe1c0: 0x68 0x65 0x6c 0x6c 0x6f 0x21 0x00
(gdb) x /3x p
0x40062c: 0x68 0x69 0x00
(gdb) x /15x tarr
0x7fffffffe1b0: 0x6d 0x61 0x78 0x00 0x00 0x6f 0x66 0x00
0x7fffffffe1b8: 0x00 0x00 0x66 0x6f 0x75 0x72 0x00
(gdb) x /3a sarr
0x7fffffffe190: 0x40062f 0x400638 0x40063f
(gdb) x /s sarr[0]
0x40062f: "variable"

Arrays of pointers and 2D arrays
are very different

(ex 7)

/* printing a string (painfully) */

int i;
char *str = "hello world!";
for (i = 0; str[i] != 0; i++) {
 printf("%c", str[i]);
}

/* or just */

printf("%s", str);

$./a.out
[1] 22432 segmentation fault (core dumped) ./a.out

/* Beware: */

int main() {
 char *str = "hello world!";
 str[12] = 10;
 printf("%s", str);
 return 0;
}

/* the fleshed out "main" with command-line args */

int main(int argc, char *argv[]) {
 int i;
 for (i=0; i<argc; i++) {
 printf("%s", argv[i]);
 printf("%s", ((i < argc-1)? ", " : "\n"));
 }
 return 0;
}

$./a.out testing one two three
./a.out, testing, one, two, three

