
Processes & ECF
CS 351: Systems Programming
Melanie Cornelius

Slides and course content obtained with permission
from Prof. Michael Lee, <lee@iit.edu>

1

Reminders
1. Look for emails from Fourier

2. Look for emails from IIT VPN

3. Look for emails from GitHub

4. Solutions to Quiz 1 posted!

5. Read CH 8 in CS:APP

2

Agenda
- Definition & OS responsibilities

- Exceptional control flow

- synch vs. asynch exceptions

- exception handling procedure

3

§ Definition & OS
responsibilities

4

a process is a program in execution - it is the
foundational unit of computation

- programs describe what we want done,
- processes carry out what we want done

5

a process has:
- code (program)
- runtime data (global, local, dynamic)
- PC, SP, FP & other registers

a process also:
- exists on some subset of system hardware
- can communicate with other processes
- can use other static materials (files, etc)

6

essential to program execution
is predictable, logical control
flow

which requires that nothing
disrupt the program
mid-execution

main() {
 fnA();
}

fnA() {
 fnB();
}

fnB() {
 loop {

 }
}

7

easiest way to guarantee this is for a process to
“own” the CPU for its entire duration (i.e.,
no-one else allowed to run)

... downsides?

8

1. No multitasking!

2. A malicious (or badly written) program can
“take over” the CPU forever

3. An idle process (e.g., waiting for input) will
underutilize the CPU

9

the operating system simulates a seamless logical
control flow for each active process

many of which can be taking place concurrently
on one or more CPUs

10

Discussions

11

Logical control flow

Process A Process B Process C

tim
e

12

Physical flow (one compute)

transitions carried
out by the OS!

Process A Process B Process C

tim
e

13

Physical flow (two computes)

transitions carried
out by the OS!

Process A Process B Process C

tim
e

ex, second CPU,
GPU

14

This is extremely elegant!

From the perspective of the program, the entire
machine belongs to itself! (virtualization)

From the perspective of the process, it controls
its runtime! (isn’t interrupted by anything other
than itself)

15

To implement this, we empower the OS.
We need:

1. a mechanism to periodically interrupt
the current process to run the OS

2. an OS module that schedules processes

3. a way to help seamlessly switch
between processes

periodic clock interrupt

scheduler

context switch

16

Discussions

17

to implement scheduling and carry out context
switches, the OS must maintain a wealth of
per-process metadata

18

a process has:
- code (program)
- runtime data (global, local, dynamic)
- PC, SP, FP & other registers

a process also:
- exists on some subset of system hardware
- can communicate with other processes
- can use other static materials (files, etc)

- OS metadata, aka process control block
- e.g., PID, mem/CPU usage, pending syscalls

19

actions that take place outside a process’s logical
control flow (e.g., context switches),
but may still affect its behavior
are part of the process’s exceptional control
flow

20

§ Exceptional Control Flow

21

Discussions

22

Two classes of exceptions:

I. synchronous

II. asynchronous

23

Two classes of exceptions:

I. synchronous

II. asynchronous

24

Synchronous exceptions are caused by the
currently executing instruction

25

3 subclasses of synchronous exceptions:

1. traps

2. faults

3. aborts

Intentional!

Usually unintentional - but might recover

Unintentional - cannot recover

26

1. traps
traps are intentionally triggered by a process

e.g., to invoke a system call

27

char *str = "hello world";
int len = strlen(str);
write(1, str, len);
...

trap instr

syscall num

28

return from trap (if it happens) resumes
execution at the next instruction

i.e., looks like a function call!

29

2. faults

faults are usually unintentional, and may be
recoverable or irrecoverable

e.g., segmentation fault, protection fault, page fault,
div-by-zero

30

often, return from fault will result in retrying the
faulting instruction

— esp. if the handler “fixes” the problem

31

3. aborts

aborts are unintentional and irrecoverable

i.e., abort = program/OS termination

e.g., memory ECC error

32

Two classes of exceptions:

I. synchronous

II. asynchronous

33

Two classes of exceptions:

I. synchronous

II. asynchronous

34

Asynchronous exceptions are caused by
events external to the current instruction

35

int main() {
 while (1) {
 printf("hello world!\n");
 }
 return 0;
}

hello world!
hello world!
hello world!
hello world!
^C
$

36

hardware initiated asynchronous exceptions are
known as interrupts

e.g., ctrl-C,
ctrl-alt-del,
power switch

37

interrupts are associated with specific processor
(hardware) pins

-checked after every CPU cycle

-associated with handler functions via the
“interrupt vector” - array of pointers to
handlers in the OS code

38

Typical interrupt procedure:

1.save process context

2.load OS

3.run handler & scheduler

4.load process context (might not match
process from #1!)

5.return

39

Discussions

40

important: after switching context to the
OS (for exception handling), there is
no guarantee a process will be switched
back in!

41

Cost of metadata saving, loading new code,
no guarantee of return --

switching context to the kernel is potentially
very expensive

— but it’s often the only way to do what needs
doing! (sys calls, IO, etc)

42

Moral:

use system calls as sparingly and as
efficiently as possible!

43

