
Process Management III
CS 351: Systems Programming
Melanie Cornelius

Slides and course content obtained with permission
from Prof. Michael Lee, <lee@iit.edu>

§ The Unix Family Tree

kernel

“handcrafted”
process -- pid = 1

bootloader

BIOS

kernel

init
configs!

etc/inittab
systemd

getty

fork & exec

kernel

init
configs!

etc/inittab
systemd

getty -- log in

fork & exec

kernel

init
configs!

etc/inittab
systemd

bash -- login

fork & exec

exec

Logged in✓

user process

kernel

init

bash

user process user process user process

exec

fork & exec

Terminal!

window manager / desktop
environment

kernel

init

X Server (e.g., XFree86)

display manager (e.g., xdm)

GUI!

desktop environment

terminal emulator (e.g.
xterm)

user process

bash

user process user process user process

exec

fork & exec

§ The Shell (aka the CLI)

the original operating system user
interface

Let the user issue requests to the operating
system

e.g.,

 fork/exec a program,
manage processes (list/stop/term),
browse/manipulate the file system

\0l s - l \0

buf

argv

pid_t pid;
char buf[80], *argv[10];

while (1) {
 /* print prompt */
 printf("$ ");

 /* read command and build argv */
 fgets(buf, 80, stdin);
 for (i=0, argv[0] = strtok(buf, " \n");
 argv[i];
 argv[++i] = strtok(NULL, " \n"));

 /* fork and run command in child */
 if ((pid = fork()) == 0)
 if (execvp(argv[0], argv) < 0) {
 printf("Command not found\n");
 exit(0);
 }

 /* wait for completion in parent */
 waitpid(pid, NULL, 0);
}

\0

0

\n

… but we are far from done :-)

all shells provide task management features

i.e., to run, track and manage multiple processes at
a time

distinguish between foreground (fg) and
background (bg) processes

-fg process “blocks” additional commands from
being run

-can have multiple bg processes at once

Some shell conventions:

-start bg process: prog_name &

-fg/bg: move a process into fg/bg

fgets(buf, 80, stdin);

/* check if bg job requested */
if (buf[strlen(buf)-2] == '&') {
 bg = 1;
 buf[strlen(buf)-2] = 0;
} else
 bg = 0;

for (i=0, argv[0] = strtok(buf, " \n");
 argv[i];
 argv[++i] = strtok(NULL, " \n"));

/* fork and run command in child */
if ((pid = fork()) == 0)
 if (execvp(argv[0], argv) < 0) {
 printf("Command not found\n");
 exit(0);
 }

/* wait for completion only if bg */
if (!bg) {
 waitpid(pid, NULL, 0);
}

background zombies!!!

/* background zombie reaping? */

if (!bg) {
 /* wait for fg job completion */
 waitpid(pid, NULL, 0);
}

/* ... and reap all bg zombies at once */
while (waitpid(-1, NULL, WNOHANG) > 0) ;

What is wrong with the previous solution?

A. background jobs aren’t reaped

B. the loop won’t reap all zombie children

C. we may reap the same child twice

D. reaping may be delayed for a long time

/* background zombie reaping? */

if (!bg) {
 /* wait for fg job completion */
 waitpid(pid, NULL, 0);
}

/* ... and reap all bg zombies at once */
while (waitpid(-1, NULL, WNOHANG) > 0) ;

-inefficient & ugly
-no guarantee when reaping will occur

what we really want is a way to be notified when
a child turns into a zombie

… so that we can run our reaping code

“notification” → exceptional control flow

§ Signals

Signals are messages delivered by the kernel to
user processes

-in response to OS events (e.g., segfault)

-or at the request of other processes

-“delivered” by executing a handler function in
the receiving process

aspects of signal processing:

1. sending a signal to a process

2. registering a handler for a given signal

3. delivering a signal (kernel mechanism)

4. designing a signal handler

1. sending a signal to a process

int kill(pid_t pid, int sig);

 No Name Default Action Description

 1 SIGHUP terminate process terminal line hangup
 2 SIGINT terminate process interrupt program
 3 SIGQUIT create core image quit program
 6 SIGABRT create core image abort program (formerly SIGIOT)
 9 SIGKILL terminate process kill program
 10 SIGBUS create core image bus error
 11 SIGSEGV create core image segmentation violation
 12 SIGSYS create core image non-existent system call invoked
 13 SIGPIPE terminate process write on a pipe with no reader
 14 SIGALRM terminate process real-time timer expired
 17 SIGSTOP stop process stop (cannot be caught or ignored)
 18 SIGTSTP stop process stop signal generated from keyboard
 19 SIGCONT discard signal continue after stop
 20 SIGCHLD discard signal child status has changed
 30 SIGUSR1 terminate process User defined signal 1
 31 SIGUSR2 terminate process User defined signal 2

Child term due to: Interrupt

int main () {
 int stat;
 pid_t pid;
 if ((pid = fork()) == 0)
 while(1) ;
 else {
 kill(pid, SIGINT);
 wait(&stat);
 if (WIFSIGNALED(stat))
 psignal(WTERMSIG(stat),
 "Child term due to");
 }
}

sometimes it’s convenient to be able to send a
signal to multiple processes at once

mechanism: process groups

- each process belongs to a process group,
identified by group id (PGID)

- PGIDs are positive integers, and in a separate
namespace from PIDs

- processes inherit their parents’ PGIDs

/* set pid's group to given pgid */
int setpgid(pid_t pid, pid_t pgid);

- if pid=0, alter the calling process

- if pgid=0, set the process’s PGID equal to its
PID

int kill(pid_t pid, int sig);

- if kill is given a negative pid, signal is sent
to all processes with PGID=abs(pid)

shell
pid=10, pgid=10

child process
pid=11, pgid=10

fork

shell
pid=10, pgid=10

child process
pid=11, pgid=11

setpgid(0,0)

group leader
pid=11, pgid=11

shell
pid=10, pgid=10

group
member

pid=13, pgid=11

group
member

pid=12, pgid=11

group
member

pid=14, pgid=11

forkfork fork

group leader
pid=11, pgid=11

shell
pid=10, pgid=10

group
member

pid=13, pgid=11

group
member

pid=12, pgid=11

group
member

pid=14, pgid=11

kill(-11, SIGINT)

SIGINT

SIGINT

SIGINT SIGINT

What is the purpose of the “kill” syscall?

A. to terminate a process

B. to send a signal

C. to receive a signal

D. to create a process group

What is a primary reason for creating a process
group?

A. so parents can reap their children

B. so children can reap their parents

C. so we can send a signal to multiple processes
at once

D. so signals can be sent from children to their
parents

2. registering a handler for a given signal

typedef void (*sig_t) (int);

sig_t signal(int sig, sig_t func);

-func is typically a pointer to a signal handler
function — “callback” API

- some signals cannot be caught!
(e.g., SIGKILL)

sig_t signal(int sig, sig_t func);

-func can also take special values:

-SIG_IGN: ignore signal

-SIG_DFL: use default action

sig_t signal(int sig, sig_t func);

void handler(int sig) {
 printf("And I still live!!!\n");
}

int main() {
 signal(SIGINT, handler);

 while(1) {
 sleep(1);
 }
 return 0;
}

^CAnd I still live!!!
^CAnd I still live!!!
^CAnd I still live!!!
^CAnd I still live!!!
^CAnd I still live!!!

int main () {
 signal(SIGINT, SIG_IGN);

 kill(getpid(), SIGINT);

 while(1) {
 sleep(1);
 printf("And I still live!!!\n");
 }
 return 0;
}

^CAnd I still live!!!
And I still live!!!
^CAnd I still live!!!
And I still live!!!
^CAnd I still live!!!
^C^C^CAnd I still live!!!

Q: how does ^C → SIGINT ?

A: the terminal emulator (tty device) maps
keystrokes to signals, which are sent to the
session leader’s process group

(typically, login shell)

user process
pid=13, pgid=12

shell
pid=10, pgid=10

user process
pid=11, pgid=11

user process
pid=12, pgid=12

^C

SIGINT

must forward
signal to FG

group

controlling
tty

Child processes inherit their parent’s signal
handlers!

…but lose them when exec-ing a program

After the following system call is invoked, when
does the kernel call handler?

 signal(SIGINT, handler);

A. immediately

B. when the process terminates due to ^C

C. when the SIGINT signal is delivered to the
process

D. when a child process is reaped

void handler (int sig) {
 printf("Signal %d received\n", sig);
 sleep(1);
}

int main () {
 signal(SIGINT, handler);
 while (1) {
 pause(); /* pauses until signal */
 printf("Back in main\n");
 }
}

^CSignal SIGINT received
Back in main
^CSignal SIGINT received
Back in main
^CSignal SIGINT received
Back in main

3. delivering a signal (kernel mechanism)

per-process kernel structures: 2 bit vectors

-“pending” – 1 bit per pending signal

-“blocked” – 1 bit per blocked signal

adjusting blocked signals (signal mask):

int sigprocmask(int how, /* SIG_BLOCK, SIG_UNBLOCK, or SIG_SETMASK */
 const sigset_t *set, /* specified signals */
 sigset_t *oset); /* gets previous mask */

(SIGKILL & SIGTSTP can’t be blocked!)

note: a newly forked child will inherit its
parent’s blocked vector, but its
pending vector will start out empty!

31 0
0 0pending

31 0
0 0blocked

31 0
0 0pending

31 0
0 0blocked

sigset_t mask;
sigemptyset(&mask);
sigaddset(&mask, SIGINT); /* SIGINT = 2 */
sigaddset(&mask, SIGALRM); /* SIGALRM = 14 */
sigprocmask(SIG_BLOCK, &mask, NULL);

31 0
0 0pending

31 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0blocked

sigset_t mask;
sigemptyset(&mask);
sigaddset(&mask, SIGINT); /* SIGINT = 2 */
sigaddset(&mask, SIGALRM); /* SIGALRM = 14 */
sigprocmask(SIG_BLOCK, &mask, NULL);

31 0
0 0pending

31 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0blocked

sigset_t mask;
sigemptyset(&mask);
sigaddset(&mask, SIGINT); /* SIGINT = 2 */
sigaddset(&mask, SIGALRM); /* SIGALRM = 14 */
sigprocmask(SIG_BLOCK, &mask, NULL);

kill(the_pid, SIGINT);

pending
31 0
0 1 0 0

31 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0blocked

sigset_t mask;
sigemptyset(&mask);
sigaddset(&mask, SIGINT); /* SIGINT = 2 */
sigaddset(&mask, SIGALRM); /* SIGALRM = 14 */
sigprocmask(SIG_BLOCK, &mask, NULL);

kill(the_pid, SIGINT);

31 0
0 1 0 0

31 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0

pending

blocked

before resuming this process, kernel computes
pending & ~blocked

31 0
0 1 0 0pending
31 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1& ~blocked

31 0
0 0

31 0
0 0

(pending & ~blocked) ⇒ 0

i.e., no signals to deliver — resume
regular control flow

31 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0pending

31 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0blocked

kill(the_pid, SIGTERM);

kill(the_pid, SIGUSR1);

31 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1& ~blocked

31 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0pending

31 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

31 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

deliver signals in order

(i.e., ignore, terminate, or run handler)

31 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

/* (user space code) */
void handler(int sig) {
 ...
}

31 0
0 1 0

/* (user space code) */
void handler(int sig) {
 ...
}

mark signal as “delivered”

(and block this signal until
 the handler returns)

31 0
0 1 0

/* (user space code) */
void handler(int sig) {
 ...
 ...
 ...
 ...
 ...
}

Q: what happens if a signal is received as
its handler is running?

kill(the_pid, SIGTERM);

31 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

/* (user space code) */
void handler(int sig) {
 ...
 ...
 ...
 ...
 ...
}

A: mark it as pending, but don’t run the
handler again! (signal currently blocked)

kill(the_pid, SIGTERM);

31 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

/* (user space code) */
void handler(int sig) {
 ...
}

Q: what happens if a signal is sent many
times before its handler is run?

kill(the_pid, SIGTERM);

kill(the_pid, SIGTERM);

kill(the_pid, SIGTERM);

31 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

/* (user space code) */
void handler(int sig) {
 ...
}

Q: …what can we do?

kill(the_pid, SIGTERM);

kill(the_pid, SIGTERM);

kill(the_pid, SIGTERM);

A: nothing. (we can’t queue signals!)

31 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

void lowpri_handler(int sig) {
 ...
 ...
 ...
}

Q: what happens if a signal is received as
a handler for a lower priority one is
already running?

kill(the_pid, SIGTERM);

31 0
0 0

void lowpri_handler(int sig) {
 ...
 ...
 ...
}

A: we preempt the lower priority handler
(and resume it — if possible — later)

void highpri_handler(int sig) {
 ...
 ...
 ...
}

Consider a scenario where a single handler function has
been registered for two distinct signals. Given that the
higher priority signal has just been delivered and the
handler is currently executing, what happens if the lower
priority signal arrives?

A. the higher priority handler is preempted and the
lower priority one is run

B. the signal is marked as pending but is not delivered
C. the lower priority handler is started, then preempted

to return to the higher priority one
D. the signal is not marked as pending, as all signals are

blocked while the higher priority handler is being run

4. designing a signal handler

Q: what can go wrong?

80 80 80
77 77 77
24 24 24
19 19 19
64 64 64
1 1 0
94 94 94
44 44 44
97 97 97
70 70 70
18 18 18
5 5 5
91 91 91
9 9 9
81 81 80
4 4 4
78 78 78
74 74 74
0 0 0
32 32 32
55 55 55
71 71 71
7 7 7
69 69 69
3 2 2
80 80 80

struct foo { int x, y, z; } f;

int main () {
 int i = 1;

 f = (struct foo){ 0, 0, 0 };

 signal(SIGALRM, tick);

 alarm(1); /* send SIGALRM in 1s */

 while(1) {
 f = (struct foo){ i, i, i };
 i = (i + 1) % 100;
 }
}

void tick(int s) {
 printf("%d %d %d\n", f.x, f.y, f.z);
 alarm(1); /* send SIGALRM in 1s */
}

10 20
20 10
10 20
20 10
10 20
20 10
10 20
20 10
10 20
20 10
10 10
10 10
10 10
10 10
...

10 20
20 10
10 20
20 10
10 20
20 10
10 10
10 10
10 10
10 10

int main () {
 int i;
 signal(SIGUSR1, handler);
 signal(SIGUSR2, handler);
 for (i=0; i<10; i++) {
 if (fork() == 0) {
 while (1) {
 kill(getppid(), SIGUSR1);
 kill(getppid(), SIGUSR2);
 }
 }
 }
 while(1) pause();
}

void handler(int s) {
 static int x = 10, y = 20;
 int tmp = x;
 x = y;
 y = tmp;
 printf("%d %d\n", x, y);
}

10 20
20 10
10 20
20 10
10 20
20 10
10 20
20 10
10 20
20 10
10 20
20 10
10 20
20 10
10 20
20 10
10 20
20 20
20 20
20 20
20 20
20 20
20 20
20 20
20 20
20 20

int x = 10, y = 20;

int main () {
 int i;
 signal(SIGUSR1, handler1);
 signal(SIGUSR2, handler2);
 for (i=0; i<10; i++) {
 if (fork() == 0)
 while (1) {
 kill(getppid(), SIGUSR1);
 kill(getppid(), SIGUSR2);
 }
 }
 while(1) pause();
}

void handler1(int s) { swapglobs(); }

void handler2(int s) { swapglobs(); }

void swapglobs() {
 int tmp = x;
 x = y;
 y = tmp;
 printf("%d %d\n", x, y);
}

lesson 1: signals can be delivered at any
time

-may interrupt any nonatomic operation

-problematic if using global variables!

design goal 1: minimize use of global
variables in sighandlers

-if needed, ideally use data that can be
read/written atomically (most
primitives)

lesson 2: a sighandler may execute in
overlapping fashion (with itself)

-when used to handle multiple signals

design goal 2: prefer separate handlers for
different signals

-otherwise, must design handlers to be
reentrant — i.e., able to be called again
(re-entered) when already executing

lesson 3: execution of sighandlers for
separate signals may overlap

-any functions they call may have
overlapping execution

design goal 3: keep sighandlers simple;
minimize calls to other functions

-any functions called by sighandlers
should be reentrant!

