
Input/Output
CS 351: Systems Programming
Melanie Cornelius

Slides and course content obtained with permission
from Prof. Michael Lee, <lee@iit.edu>

I/O

MemoryCPU

disk terminal shared
memory printer network …

disk terminal shared
memory printer network …

-vast number of different
mechanisms

-but overlapping requirements:
-read/write operations
-metadata (e.g., name, position)
-robustness, thread-safety

programming concerns:

-how are I/O endpoints
represented?

-how to perform I/O?

…efficiently?

focus on Unix system-level I/O

§ Unix I/O & Filesystem
Architecture Brief

2 general classes of I/O devices:

-block: accessed in fixed-size
chunks; support for seeking &
random access

-character: char-by-char streaming
access; no seeking / random
access

block
device

⋯ ⋯

char
device

2 general classes of I/O devices:

-block: e.g., disk, memory

-character: e.g., network, mouse

the filesystem acts as a namespace for data
residing on different devices

● regular files consist of ASCII or binary
data, stored on a block device

● special files may represent directories,
in-memory structures, sockets, or raw
devices

“Files” are a general OS abstraction for
arbitrary data objects!

each file has a unique inode data
structure in the filesystem, tracking:

-ownership & permissions

-size, type, and location

-number of links

a given inode can be referenced using
one or more fully qualified path(s),
e.g.,

-/proc/sys/kernel/version

-/dev/tty

inode table

locate & load
inode

structure

“/home/mseryn/.vimrc”

OS’s filesystem module

every currently open file has a single
in-memory inode, aka. “vnode”

vnode

- ownership
- permissions
- size & location

each open file is also tracked by the
kernel using an open file description
structure

vnode

- ownership
- permissions
- size & location

open file desc

- position
- access mode

can have multiple open file descriptions
referencing a single vnode (e.g., to track
separate read/write positions)

vnode

- ownership
- permissions
- size & location

open file desc

- position
- access mode

open file desc

- position
- access mode

for each process, the kernel maintains a
table of pointers to its open file structures

...

OFD

OFD

OFD

OFD

vnode

vnode

vnode

all these structures reside in kernel memory
(off-limits to user processes)!

...

OFD

OFD

OFD

OFD

vnode

vnode

vnode

protected memory

to let a process reference an open file, the
kernel returns an index into the table

...

OFD

OFD

OFD

OFD

vnode

vnode

vnode

protected memory

0

1

2

3

...

...

OFD

OFD

OFD

OFD

vnode

vnode

vnode

0

1

2

3

...

3

kerneluser

call this a file descriptor (FD)

by convention, processes …

-read from FD 0 for standard input

-write to FD 1 for standard output

-write to FD 2 for standard error

after opening a file, all file operations
are performed using file descriptors!

0

1

2

0

1

2

0

1

2

kernel space

per process system-wide

OFD

OFD

OFD

OFD

vnode

vnode

vnode network

 terminal

 disk

FDs obscure kernel I/O & FS
implementation details from the user,
and enable an elegant, abstract I/O
API

Some mini-quizzes

0

1

2

3

4

vnode fileopen file
description

FDs

(a)
(b)

(c) (d)

(e)

FD table

Where is the file position stored?

(f)

Which can be directly accessed by the
user?

0

1

2

3

4

vnode fileopen file
description

FDs

(a)
(b)

(c) (d)

(e)

FD table (f)

Where are permissions/ownership info
stored?

0

1

2

3

4

vnode fileopen file
description

FDs

(a)
(b)

(c) (d)

(e)

FD table (f)

Where is data ultimately read from/written
to?

0

1

2

3

4

vnode fileopen file
description

FDs

(a)
(b)

(c) (d)

(e)

FD table (f)

Which establish the stdin/out/err
conventions?

0

1

2

3

4

vnode fileopen file
description

FDs

(a)
(b)

(c) (d)

(e)

FD table (f)

Which are per-process?

0

1

2

3

4

vnode fileopen file
description

FDs

(a)
(b)

(c) (d)

(e)

FD table (f)

Which are cloned on fork?

0

1

2

3

4

vnode fileopen file
description

FDs

(a)
(b)

(c) (d)

(e)

FD table (f)

Which have a one-to-one mapping to open
files?

0

1

2

3

4

vnode fileopen file
description

FDs

(a)
(b)

(c) (d)

(e)

FD table (f)

§ System-level I/O API

int open (const char *path, int oflag, ...);
int fstat(int fd, struct stat *buf);
int dup (int fd);
int dup2 (int fd1, int fd2);
int close(int fd);
off_t lseek(int fd, off_t offset, int whence);
ssize_t read (int fd, void *buf, size_t nbytes);
ssize_t write(int fd, const void *buf, size_t nbytes);

- loads vnode for file at path (if not already
loaded)

-creates & inits a new OFD

-returns a FD referring to the new OFD

int open(const char *path,
 int oflag, ...);

-oflag is an or-ing of O_RDONLY,
O_WRONLY, O_RDWR, O_CREAT, O_TRUNC,
etc.

- if O_CREAT, must specify access
permissions of new file (“rwx” flags)

int open(const char *path,
 int oflag, ...);

int fd1 = open("foo.txt", O_CREAT | O_TRUNC | O_RDWR, 0644);

0

1

2

3

4
vnode empty fileOFD

(first unused FD is used/returned)

…

0

1

2

3

4
vnode empty fileOFD

…

int fd1 = open("foo.txt", O_CREAT | O_TRUNC | O_RDWR, 0644);
int fd2 = open("foo.txt", O_RDONLY);

OFD

int fd1 = open("foo.txt", O_CREAT | O_TRUNC | O_RDWR, 0644);

struct stat stat;

/* query file metadata */
fstat(fd1, &stat);

printf("Inode # : %lu\n", stat.st_ino);
printf("Size : %lu\n", stat.st_size);
printf("Links : %lu\n", stat.st_nlink);

Inode # : 19603149
Size : 0
Links : 1

a process inherits its parent’s open files
across a fork, and retains them post-exec!

int fd1 = open("foo.txt", O_CREAT | O_TRUNC | O_RDWR, 0644);
fork();

3

4
OFD vnode empty file

per-process cross-system

parent

3

4

child i.e., parent and child share position
and file access mode

sharing an OFD can be very handy —
e.g., for coordinating output to
terminal

can also explicitly “share” position
from separate FDs using dup syscalls

0

1

2

3

4
vnode empty fileOFD

…

int fd1 = open("foo.txt", O_CREAT | O_TRUNC | O_RDWR, 0644);
int fd2 = dup(fd1);

i.e., reading/writing FD 4 is equivalent
to doing so with FD 3

0

1

2

3

4
vnode empty fileOFD

…

int fd1 = open("foo.txt", O_CREAT | O_TRUNC | O_RDWR, 0644);
dup2(fd1, 2); /* second arg is "destination" fd */

i.e., reading/writing FD 2 (stderr) is
equivalent to doing so with FD 3

(original FD is automatically closed)

-delete OFD pointer in file table for fd

-if the OFD has no referring FDs (in any
process), deallocate it

int close(int fd);

0

1

2

3

4
vnode empty fileOFD

…

int fd1 = open("foo.txt", O_CREAT | O_TRUNC | O_RDWR, 0644);
int fd2 = open("foo.txt", O_RDONLY);

OFD

0

1

2

3

4
vnode empty fileOFD

…

int fd1 = open("foo.txt", O_CREAT | O_TRUNC | O_RDWR, 0644);
int fd2 = open("foo.txt", O_RDONLY);
close(fd1);

OFD

0

1

2

3

4
vnode empty file

…

int fd1 = open("foo.txt", O_CREAT | O_TRUNC | O_RDWR, 0644);
int fd2 = open("foo.txt", O_RDONLY);
close(fd1);
close(fd2);

OFD

0

1

2

3

4
vnode empty fileOFD

…

int fd1 = open("foo.txt", O_CREAT | O_TRUNC | O_RDWR, 0644);
int fd2 = dup(fd1);
close(fd1);

0

1

2

3

4
vnode empty fileOFD

…

int fd1 = open("foo.txt", O_CREAT | O_TRUNC | O_RDWR, 0644);
int fd2 = dup(fd1);
close(fd1);
close(fd2);

