Inter-Process

Communication
CS 351: Systems Programming

Computer

sl \eclanie CorneliusShides and course

Slides and course content obtained with permission
from Prof. Michael Lee, <lee@iut.edu> N ! College of Science

/ ILLINOIS INSTITUTE OF TECHNOLOGY

T'he OS kernel does a great job of wsolating

processes from each other

if:':' IT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

It not, programming would be much harder!
- all data accessible (read/write) to world
- memory mntegrity not guaranteed

- control flow unpredictable

if:':' IT College of Science
/' \Liinots insTITUTE oF TECHNOLOGY

But processes are more useful when they
can exchange data & wnteract dynamically

if:':' IT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

T'he original data exchange unit: the file
see: BBS, F'I'P, Napster, Bit lorrent

if:':' IT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

But what about dynamic data exchange?

e.g., iInstant messaging, VOIP, MMOGs

if:':' IT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

T'he kernel enforces 1solation

... SO to pertorm wnter-process communication
(IPC), must ask kernel for help/assistance

if:':' IT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

Another role for the kernel: errand boy

is;; IT College of Science

[/ ILLINOIS INSTITUTE OF TECHNOLOGY

Select IPC mechanisms:
I. signals
(regular) files
shared memory
unnamed & named pipes

file locks & semaphores

SRR

sockets

if:':' IT College of Science
/' \Liinots insTITUTE oF TECHNOLOGY

QCommon Issues

if:':' IT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

I. ink/endpoint creation
- naming

- lookup / registry

if:':' IT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

2. data transmission
- unidirectional/bidirectional
- single/multi-sender/recipient
- speed/capacity
- message packetizing

- routing

if:':' IT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

3. data synchronization

- behavior with multiple senders
and/or receivers

- control: implicit / explicit / none

if:':' IT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

4. access control
- mechanism

- granularity

is;; IT College of Science

[/ ILLINOIS INSTITUTE OF TECHNOLOGY

liles

is;; IT College of Science

[/ ILLINOIS INSTITUTE OF TECHNOLOGY

in general, regular files are a really lousy
mechanism for dynamic 1PC

- ultra-slow backing store (disk)

- coordinating file positions 1s tricky

if:':' IT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

int main() {
int fd;
if (fork() == 0){
fd = open("shared.ixt", O_CREATIO_TRUNCIO_WRONLY, 0644);
dup2(fd, 1);
execl("/bin/echo", "/bin/echao”, "hello", NULL);
}
if (fork() == 0){
fd = open("shared.ixt", O_RDONLY);
dup2(fd, 0);
execl("/usr/bin/wc", "/usr/bin/wc", "-c", NULL);
}
}

Output?

... 1t depends ...

ii:’,’ IT College of Science

[/ ILLINOIS INSTITUTE OF TECHNOLOGY

we won’t be considering regular files as a
mechanism for (dynamic) [PC

if:':' IT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

Sohared Memory

if:':' IT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

simple 1dea: allow processes to share data
stored 1In memory

1.e., sidestep memory protection

if:':' IT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

shm... APIs:
- file descriptor based

- memory mapped

if:':' IT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

FD-based API:

iInt shm_open(const char *name, int oflag, mode_t mode);

- returns FD for shared memory

- may be mapped to temp file (of name)
- persists until explicitly removed!

int shm_unlink(const char *name);

- explicitly remove shared memory

ii:’,’ IT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

#define SHM_NAME "/myshm" /* arbitrary shm identifier */

/* writing process */

int shmfd = shm_open(SHM_NAME, O_RDWRIO_CREAT, 0644);
write(shmid, ...);

/* reading process */

int shmfd = shm_open(SHM_NAME, O_RDONLY, 0);
char buf[N];
read(shmfd, buf, N);

ii:’,’ IT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

memory-mapped API:

int shmget(key_t key, size_t size, int shmflg);

- returns ID for shm of Size

void *shmat(int shmid, const void *shmaddr, int shmflg);

- returns (local) pointer to shm given 1D

int shmdt(const void *shmaddr);

- detach from shm (but still persists)

int shmctl(int shmid, int cmd, struct shmid_ds *buf);

- manage existing shm object

x
N

=" [IT College of Science
[/ ILLINOIS INSTITUTE OF TECHNOLOGY

#define SHM_KEY O0xABCD
#define SHM_SIZE 1024

int shmid = shmget(SHM_KEY,
SHM_SIZE,
IPC_CREATI0600);

char *shm = shmat(shmid, NULL, 0);

strcpy(shm, "hello world!");

shmdt(shm);

shmctl(shmid, IPC_RMID, NULL);

/* unique system-wide shm key

/* size of shm (in bytes)

/* IPC_CREAT not needed if already exists
/* map shm into my address space

[* access shm (via pointer)

/* detach from shm (i.e., unmap)

/* remove shm from system

A\

*/
*/
*/
*/
*/
*/

*/

IT College of Science
ILLINOIS INSTITUTE OF TECHNOLOGY

shm 1s the fastest torm ot 1PC;

only overhead = process switch
(unavoidable anyway)

if:':' IT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

Problem: how do processes know when
communication has occured?

lo fix, we need processes using shared
memory to communicate

... using another IPC mechanism!

if:':' IT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

one approach: signals

writer

creates shm

writes to shm

block for signal

detach from shm

remove shm

reader

T~ block for signal

“oroceed!”

—+ attach to shm

@ —+ read from shm

—+ detach from shm

“oroceed!”

if:':' IT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

int sig_recvd = 0;

void sighandler (int sig)

{

if (sig == SIGUSR1)

sig_recvd = 1;

int main (int argc, char *argv(])

{

signal(SIGUSR1, sighandler);

/

/

/* parent/writer process */
if ((pid = fork()) '=0){
shmid =shmget(SHM_KEY, ..., IPC_CREATI...);

shm_arr = shmat(shmid, ...);

for (i=0; i<SHM_SIZE; i++) {
shm_arr[i] = i;

}
kill(pid, SIGUSR1); /* signal child */

while (!sig_recvd) /* block for child signal */
sleep(1);

shmdt(shm_arr);
shmctl(shmid, IPC_RMID, NULL);

} 3

01234

/* child/reader process */
else {
while (!sig_recvd) /* block for parent signal */
sleep(1);

shmid = shmget(SHM_KEY, ...);

shm_arr = shmat(shmid, ...);

o)

for (i=0; i<SHM_SIZE; i++) {
printf("%d ", shm_arr[i]);
}

shmdt(shm_arr);
kill(getppid(), SIGUSR1); /* signal parent */

‘/ IT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

but wait ...

/* parent/writer process */ /* child/reader process */
if ((pid = fork()) !=0) { else {
while (!sig_recvd)
for (i=0; i<SHM_SIZE; i++) { pause();
shm_arr[i] = 1;
Y
\io; i<SHM_SIZE; i++) {
kill(pid, SIGUSR1); mitf("%d ", shm_arrfi]);
}
} ¥

we’ve eliminated concurrency!
(w.r.t. shm access)

is;; IT College of Science

[/ ILLINOIS INSTITUTE OF TECHNOLOGY

how about:

writer

creates shm =

write to shm =

reader

T~ block for signal

block for signal ==

—+ read from shm

write to shm =

-1T- block for signal

block for signal ==

—+ read from shm

-T- block for signal

if:':' IT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

how about:

writer

N writes to shm ==
»

reader

-T- block for signal

N x “proceed!”

=T read from shm
up to N times

recall: signals aren’t queued! :~(

if:':' IT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

also, with all this sync overhead,
shm 1sn’t looking so hot anymore

if:':' IT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

S Unnamed Pipes

if:':' IT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

int pipe(int fds[2]);

fds[0] is the “reading end”
fds[1] is the “writing end”

A4

IT College of Science
|||||||||||||||||||||||||||||

- buffer of finite size = PIPE_BUF

- defined 1n <limits.h>

- on fourier = 4096 bytes

ﬁf:':' IT College of Science
/' \Liinots insTITUTE oF TECHNOLOGY

- read blocks for min of 1 byte

- write blocks until complete

- writes < PIPE BUF are atomic

- can’t be mterrupted by other writes

ﬁf:':' IT College of Science
/' \Liinots insTITUTE oF TECHNOLOGY

kernel

user . user

- speed can’t compare to shm!

- requires copy from user to kernel
bufter, then back to a user butter

is;; IT College of Science

[/ ILLINOIS INSTITUTE OF TECHNOLOGY

int i, j, fds[2];
pipe(fds); /* create pipe */

if (fork() '=0) {
/* parent writes */
for (i=0; i<10; i++) {
write(fds[1], &i, sizeof(int));
}

}ebe{
/* child reads */
for (i=0; i<10; i++) {
read(fds[0], &j, sizeof(int));
printf("%d ", j);
}
}

0123456789

ﬁf:':' IT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

int i, n, fds[2];

char buf[80];

char *strings[] ={"the", "quick", "brown", "fox", "jumps",
"Over", Ilthell, Illazyll, lldogll};

pipe(fds);
for (i=0; i<9; i++) { /* 9 child processes! */
if (fork() ==0) {
write(fds[1], strings[i], strlen(strings[il));
exit(0);
¥
}

while ((n = read(fds[0], buf, sizeof(buf))) > 0) {
write(1, buf, n);
printf("\n");

}

the
quick
foxoverbrown

jumpslazythe
dog

ﬁf:':' IT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

kernel takes care of buftering
& synchronization! (yippee!)

if:':' IT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

back to shell pipes:

$ echo hello | wc

1 1 6

ﬁf:':' IT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

int fds[2];
pid_t pid1, pid2;
pipe(fds);
if ((pid1 = fork()) == 0) {
dup2(fds[i], 1);
execlp("echo", "echo", "hello", NULL);

}

if ((pid2 = fork()) == 0) {
dup2(fds[0], 0);
execlp("wc", "wc", NULL);

}
waitpid(pid2, NULL, 0);

ﬁf:':' IT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

Read on pipe will always block tor = 1 byte

until writing ends are all closed

ﬁ/' IT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

int fds[2];

pid_t pid1, pid2;

pipe(fds);

if ((pid1 = fork()) == 0) {
dup2(fds[1], 1);
execlp("echo", ...);

Y

iIf ((pid2 = fork()) == 0) {
dup2(fds[0], 0);
execlp("wc", ...);

}
waitpid(pid2, NULL, 0);

NEver Sees

S
N

EOF!

=" [IT College of Science
[/ ILLINOIS INSTITUTE OF TECHNOLOGY

if ((pid1 = fork()) == 0) {
dup2(fds[1], 1);
close(fds[1]);
execlp("echo", "echo", "hello", NULL);
Y
close(fds[1]);
if ((pid2 = fork()) == 0) {
dup2(fds[0], 0);
execlp("wc", "wc", NULL);

}

ﬁf:':' IT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

SO ... why “unnamed” pipes?

is;; IT College of Science

[/ ILLINOIS INSTITUTE OF TECHNOLOGY

int fds[2];

if (fork() == 0) {
/* proc 1%/
pipe(fds);
write(fds[1], ...);
Y

if (fork() ==0) {
/* proc 2 */
read(?, ...);

}

- no way for proc | and
proc 2 to talk over pipe!

- 1dentified solely by FDs

— process local

ﬁf:':' IT College of Science
/' \Liinots insTITUTE oF TECHNOLOGY

SNamed Pipes (FIFOs)

int mkfifo (const char* path,
mode_t perms)

- creates a FIFO special file at path in
file system

- open(s) then read & write

- exhibits pipe semantics!

if:':' IT College of Science
/' \Liinots insTITUTE oF TECHNOLOGY

let’s talk a bit more about
synchronization

if:':' IT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

why?

so concurrent systems can be made

predictable

if:':' IT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

how?

so far:
- wait (limited)
- Kill & signal (lousy)
- pipe (implicit)

if:':' IT College of Science
/' \Liinots insTITUTE oF TECHNOLOGY

some UNIX [PC mechanisms are purpose-

burlt tor synchronization

if:':' IT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

QFile Locks

if:':' IT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

motvation:

- process virtual worlds don’t extend to
the file system

- concurrently moditying files can have
ugly consequences

- but files are the most widely used torm

ol IPC!

if:':' IT College of Science
/' \Liinots insTITUTE oF TECHNOLOGY

a process can acquire a lock on a file,
preventing other processes from using it

important: locks are not preserved across
forks! (1.e., a child doesn’t inherit 1ts
parent’s locks)

if:':' IT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

problem: most file systems only support
advisory locking

1.e., locks are not entorced!

if:':' IT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

in Linux, mandatory locking 1s possible, but
requires filesystem to support it

if:':' IT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

The implementation of mandatory locking in all known versions of
Linux is subject to race conditions which render it unreliable:

a write(2) call that overlaps with a lock may modity data after the
mandatory lock 1s acquired; a read(2) call that overlaps with a lock may
detect changes to data that were made only after a write lock was
acquired. Similar races exist between mandatory locks and mmap(2).
It 15 therefore inadvisable to rely on mandatory locking.

if:':' IT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

also, file locks are not designed for general-
purpose synchronization

if:':' IT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

e.g., what 1t we want to:

- allow only I of N processes to access
an arbitrary resource.

- allow M of N processes to access a
resource?

- control the order in which processes
run?

if:':' IT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

Jdemaphores

if:':' IT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

semaphore = synchronization primitive
- object with associated counter

- usually it to count = 0

if:':' IT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

sem_t *sem_open(const char *name, int oflag,
mode_t mode, unsigned int value);

- creates semaphore 1nitialized to value

sem_t *sem_open(const char *name, int oflag);

- retrieves existing semaphore

int sem_wait(sem_t *sem);

- decrements value; blocks if new value < 0
- returns 0 on success
- returns -1 1f interrupted without decrementing

int sem_post(sem_t *sem);

- 1ncrements value; unblocks 1 process (if any)
- returns 0 on success

if:':' IT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

sem_t *sem = sem_open("/fred", O_CREAT, 0600, 1);

“/tred”

is;; IT College of Science

[/ ILLINOIS INSTITUTE OF TECHNOLOGY

“/fred”

-

\

A4

IT College of Science
ILLINOIS INSTITUTE OF TECHNOLOGY

sem_wait(sem)

P,

“/fred”

-

\

=
L
NG

A4

IT College of Science
ILLINOIS INSTITUTE OF TECHNOLOGY

P,

Sem_wait(sem) J/

“/fred”

-

\

=
L
NG

A\

IT College of Science
ILLINOIS INSTITUTE OF TECHNOLOGY

P,

Sem_wait(sem) J/

“/fred”

-

0

\

A\

IT College of Science
ILLINOIS INSTITUTE OF TECHNOLOGY

sem_wait(sem)

“
—'
-

“/fred”

-

0

\

\

y

-
L
NO

- |IT College of Science
ILLINOIS INSTITUTE OF TECHNOLOGY

sem_wait(sem)

P,

“/fred”

-

0

\

A4

IT College of Science
ILLINOIS INSTITUTE OF TECHNOLOGY

sem_wait(sem)

“/fred”

-

0

\

Po

\

y

-
L
NO

—— sem_wait(sem)

- |IT College of Science
ILLINOIS INSTITUTE OF TECHNOLOGY

sem_wait(sem)

P,

“/fred”

-

0

\

P9

sem_wait(sem)

IT College of Science

\id
[/ ILLINOIS INSTITUTE OF TECHNOLOGY

sem_wait(sem)

P,

“/fred”

-

-1

\

P9

sem_wait(sem)

IT College of Science

\id
[/ ILLINOIS INSTITUTE OF TECHNOLOGY

“/tred”

4)

P Po

sem_wait(sem) ==

blocks!

(no return) sem_wait(sem)

is;; IT College of Science

[/ ILLINOIS INSTITUTE OF TECHNOLOGY

sem_wait(sem)

P,

“/fred”

-

-1

\

P9

sem_wait(sem)

IT College of Science

\id
[/ ILLINOIS INSTITUTE OF TECHNOLOGY

sem_wait(sem)

sem_post(sem)

P,

“/fred”

-

-1

\

P9

sem_wait(sem)

IT College of Science

\id
[/ ILLINOIS INSTITUTE OF TECHNOLOGY

sem_wait(sem)

sem_post(sem)

P,

++

“/fred”

-

-1

\

P9

sem_wait(sem)

IT College of Science

\id
[/ ILLINOIS INSTITUTE OF TECHNOLOGY

sem_wait(sem)

sem_post(sem)

P,

++

“/fred”

-

0

\

P9

sem_wait(sem)

IT College of Science

\id
[/ ILLINOIS INSTITUTE OF TECHNOLOGY

“/fred”

4)

P,

sem_wait(sem) ==

sem_wait(sem)

++

sem_post(sem)

is,{.’ IIT College of Science

[/ ILLINOIS INSTITUTE OF TECHNOLOGY

sem_wait(sem)

sem_post(sem)

“/fred”

-

~

\

y

-
L
NO

sem_wait(sem)

- |IT College of Science
ILLINOIS INSTITUTE OF TECHNOLOGY

sem_wait(sem)

sem_post(sem)

“/fred”

-

0

\

\

y

-
L
NO

sem_wait(sem)

- |IT College of Science
ILLINOIS INSTITUTE OF TECHNOLOGY

sem_wait(sem)

sem_post(sem)

“/fred”

-

0

\

Po

\

-
L
NO

y

—— sem_wait(sem)

—+— sem_post(sem)

- |IT College of Science
ILLINOIS INSTITUTE OF TECHNOLOGY

sem_wait(sem)

sem_post(sem)

“/fred”

-

0

\

++

Po

\

y

-
L
NO

—— sem_wait(sem)

sem_post(sem)

- |IT College of Science
ILLINOIS INSTITUTE OF TECHNOLOGY

sem_wait(sem)

sem_post(sem)

“/fred”

-

\

++

Po

\

y

-
L
NO

—— sem_wait(sem)

sem_post(sem)

- |IT College of Science
ILLINOIS INSTITUTE OF TECHNOLOGY

sem_wait(sem)

sem_post(sem)

“/fred”

4)

P9

— sem_wait(sem)

sem_post(sem)

is;; IT College of Science

[/ ILLINOIS INSTITUTE OF TECHNOLOGY

sem_wait(sem)

sem_post(sem)

“/fred”

-

\

Po

—— sem_wait(sem)

—+— sem_post(sem)

= |IT College of Science

ILLINOIS INSTITUTE OF TECHNOLOGY

/* unsynchronized file writers */
inti, j, fd;
fd = open("shared.ixt", O_CREATIO_WRONLY, 0600);
for (i=0; i<5; i++) {
if (fork() ==0) {

for (j='0"; j<='9"; j++) {
write(fd, &j, 1);
sleep(random() % 3);
Y

) exit(0);

}

$ cat shared.txt

01000011223411234532356765475968764798789529869789

ﬁf:':' IT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

/* synchronized file writers */
inti, j, fd;
sem_t *mutex = sem_open("/mutex”, O_CREAT, 0600, 1);
fd = open("shared.ixt", O_CREATIO_WRONLY, 0600);
for (i=0; i1<5; i++) {
iIf (fork() == 0) {
while (sem_wait(mutex) < 0) ;
for (j='0"; j<='9'; j++) {
write(fd, &j, 1);
sleep(random() % 3);
Y
sem_post(mutex);
exit(0);
Y
Y

$ cat shared.txt

01234567890123456789012345678901234567890123456789

ﬁf:':' IT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

just as with shared memory, semaphores
persist when process exits ... must unlink

sem_t *mutex = sem_open("/mutex", O_CREAT, 0600, 1);
for (i=0; i<5; i++) {
if (fork() == 0){
while (sem_wait(mutex) < 0) ;

sem_post(mutex);
exit(0);
Y
Y
while (wait(NULL) >= 0);
sem_close(mutex);
sem_unlink("/mutex");

ii:’,’ IT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

there 1s much, much more to
synchronization & concurrency ...

(coming 1 GS 450!)

if:':' IT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

JIPC Recap

if:':' IT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

Select IPC mechanisms:
I. signals
(regular) files
shared memory
unnamed & named pipes

file locks & semaphores

SRR

sockets

if:':' IT College of Science
/' \Liinots insTITUTE oF TECHNOLOGY

one motve: data communication

- at one end: shm — fast but no
synchronization

- at other end: pipes — slower but
implicitly synchronized

if:':' IT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

another motive: synchronization
- signals: system events
- file locks (advisory!)

- semaphores: simple but surprisingly
versatile!

if:':' IT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

so far, just intra-system [PC.

coming later, network sockets for inter-

system [PC!

if:':' IT College of Science

,/ ILLINOIS INSTITUTE OF TECHNOLOGY

