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REMINDERS: 

1. Lab 02 -- Due 29 Oct (Sun) 

2. Lab 03 -- Out today, due 5 Nov 

3. Midterm exam: 3 Nov, review next 
Wed. 

4. Oral exam: discuss
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Midterm topics: 

1. C (pointers, arrays, structs, functions) 

2. Process: CS:APP 8.1-8.6 

3. Mem hierarchy, cacheing CS:APP  
6.1-6.6 

4. Virtual mem, CS:APP 9.1-9.7
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registers

cache (SRAM)

main memory (DRAM)

local hard disk drive (HDD/SSD)

remote storage (networked drive / cloud)

previously: SRAM ⇔ DRAM



Computer 
ScienceScience

registers

cache (SRAM)

main memory (DRAM)

local hard disk drive (HDD/SSD)

remote storage (networked drive / cloud)

next: DRAM ⇔ HDD, SSD, etc. 
i.e., memory as a “cache” for disk
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main goals: 

1. maximize memory throughput 
2. maximize memory utilization 

3. provide address space consistency  
& memory protection to processes
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throughput = # bytes per second 

- depends on access latencies (DRAM, 
HDD, etc.) and “hit rate”
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utilization = fraction of  allocated memory 
that contains “user” data (aka payload) 

- vs. metadata and other overhead 
required for memory allocation
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address space consistency → provide a uniform 
“view” of  memory to each process
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address space consistency → provide a uniform 
“view” of  memory to each process

Kernel virtual memory

(code, data, heap, stack)

Memory mapped region for

shared libraries

Run-time heap
(created by malloc)

User stack

(created at runtime)

Unused0

%esp (stack pointer)

Memory

invisible to

user code

brk

0xc0000000

0x08048000

0x40000000

Read/write segment
(.data, .bss)

Read-only segment
(.init, .text, .rodata)

Loaded from the 

executable file

0xffffffff
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memory protection → prevent processes from 
directly accessing each other’s address space
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memory protection → prevent processes from 
directly accessing each other’s address space

Kernel virtual memory

(code, data, heap, stack)

Memory mapped region for

shared libraries

Run-time heap
(created by malloc)

User stack

(created at runtime)

Unused0

%esp (stack pointer)

Memory

invisible to

user code

brk

0xc0000000

0x08048000

0x40000000

Read/write segment
(.data, .bss)

Read-only segment
(.init, .text, .rodata)

Loaded from the 

executable file

0xffffffff

P0

Kernel virtual memory

(code, data, heap, stack)

Memory mapped region for

shared libraries

Run-time heap
(created by malloc)

User stack

(created at runtime)

Unused0

%esp (stack pointer)

Memory

invisible to

user code

brk

0xc0000000

0x08048000

0x40000000

Read/write segment
(.data, .bss)

Read-only segment
(.init, .text, .rodata)

Loaded from the 

executable file

0xffffffff

P1

Kernel virtual memory

(code, data, heap, stack)

Memory mapped region for

shared libraries

Run-time heap
(created by malloc)

User stack

(created at runtime)

Unused0

%esp (stack pointer)

Memory

invisible to

user code

brk

0xc0000000

0x08048000

0x40000000

Read/write segment
(.data, .bss)

Read-only segment
(.init, .text, .rodata)

Loaded from the 

executable file

0xffffffff

P2



Computer 
ScienceScience

i.e., every process should be provided with 
a managed, virtualized address space
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“memory addresses”: what are they, really?
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“physical” address: (byte) index into DRAM

data

CPU

address: N

Main Memory

N

(note: cache not shown)
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data

CPU

address: N

Main Memory

N

instructions executed by the CPU do not 
refer directly to physical addresses!
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processes reference virtual addresses, 

the CPU relays virtual address requests to 
the memory management unit (MMU), 

which are translated to physical addresses
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disk  
address

CPU

Main Memory

“swap” space

MMU

address 
translation 

unit

physical  
address

virtual address

(note: cache not shown)
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essential problem: translate request for a 	
virtual address → physical address 

… this must be FAST, as every memory 
access from the CPU must be translated
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both hardware/software are involved: 

- MMU (hw) handles simple and fast 
operations (e.g., table lookups) 

- Kernel (sw) handles complex tasks  
(e.g., eviction policy)
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§Virtual Memory 
Implementations
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P0

0

Main Memory

0

1. simple relocation

B

N

N+B
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data

CPU

VA: N PA: N+B

MMU

relocation reg.

Main Memory

B

N

1. simple relocation

- per-process relocation address is loaded  
by kernel on every context switch

B
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data

CPU

VA: N PA: N+B

MMU

relocation reg.

Main Memory

B

N

1. simple relocation

- problem: processes may easily overextend 
their bounds and trample on each other

B
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data

CPU

VA: N PA: N+B

Main Memory

B
N

1. simple relocation

- incorporate a limit register to provide 
memory protection

MMU

relocation reg.
B

limit reg.
L

assert (0 ≤ N ≤ L)

B+L
process 
sandbox



Computer 
ScienceScience

data

CPU

VA: N PA: N+B

Main Memory

B
N

1. simple relocation

- assertion failure triggers a fault, which 
summons kernel (which signals process)

MMU

relocation reg.
B

limit reg.
L

assert (0 ≤ N ≤ L)

B+L
process 
sandbox
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pros: 

- simple & fast! 

- provides protection
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but: 	available memory for mapping 	
depends on value of  base address 

i.e., address spaces are not consistent!

B

B

vs.

Main MemoryMain MemoryVirtual Memory
stack

code

data

heap

stack

code

data

heap

Virtual Memory
stack

code

data

heap

code

data
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also: 	all of  a process below the address limit 	
must be loaded in memory 

i.e., memory may be vastly under-utilized

Main Memory

B

possibly unused!

virtual 
address 
space

0

L stack

code

stack

code
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2. segmentation 

- partition virtual address space into 
multiple logical segments 

- individually map them onto physical 
memory with relocation registers
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MMU

Base Limit
0 B0 L0

1 B1 L1

2 B2 L2

3 B3 L3

Segment Table

Main Memory

B3

B3+L3

B2

B2+L2

B1

B1+L1

B0

B0+L0

Seg #0: Code
0

0

0

0
Seg #1: Data

Seg #3: Stack

Seg #2: Heap

Segmented Virtual 
Address Space

virtual address has form seg#:offset



Computer 
ScienceScience

MMU

Base Limit
0 B0 L0

1 B1 L1

2 B2 L2

3 B3 L3

Segment Table

VA: seg#:offset

data

assert (offset ≤ L2)

⊕
CPU

PA: offset + B2

Main Memory

B3

B3+L3

B2

B2+L2

B1

B1+L1

B0

B0+L0
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- implemented as MMU registers 

- part of  kernel-maintained, per-process 
metadata (aka “process control block”) 

- re-populated on each context switch

Base Limit
0 B0 L0

1 B1 L1

2 B2 L2

3 B3 L3

Segment Table



Computer 
ScienceScience

pros: 

- still very fast 
- translation = register access & addition 

- memory protection via limits 

- segmented addresses improve consistency
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possibly unused!

Main Memory

B

virtual 
address 
space

0

L stack

code

stack

code

simple 
relocation:

segmentation:
better!

Main Memory

0

stack

code

0 stack

code

virtual 
address 
space
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0

0

stack

code

virtual 
address 
space 2x

x
x

Main Memory

0

stack

code

0 stack

code

virtual 
address 
space

- variable segment sizes → memory fragmentation 

- fragmentation potentially lowers utilization 
- can fix through compaction, but expensive!
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3. paging 

- partition virtual and physical address 
spaces into uniformly sized pages 

- virtual pages map onto physical pages
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stack

heap

data

code

physical memory
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stack

heap

data

code

- minimum mapping granularity = page 

- not all of  a given segment need be mapped

physical memory
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modified mapping problem: 

- a virtual address is broken down into 
virtual page number & page offset 

- determine which physical page (if  any) 
a given virtual page is loaded into 

- if  physical page is found, use page 
offset to access data
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VA:

PA:

Given page size = 2p bytes
 p

 p

 virtual page offset virtual page number

 physical page offset physical page number
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 physical page offset physical page number

address 
translation

VA:

PA:

 virtual page offset virtual page number
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 physical page offset physical page number

VA:

PA:

 virtual page offset virtual page number

translation structure: page table
valid PPN

n

2n entriesindex

if  invalid, page 
is not mapped
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page table entries (PTEs) typically contain 
additional metadata, e.g.: 

- dirty (modified) bit 

- access bits (shared or kernel-owned 
pages may be read-only or inaccessible)
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e.g.,	32-bit virtual address, 
	 4KB (212) page size, 
	 4-byte PTE size; 

- size of  page table?



Computer 
ScienceScience

e.g.,	32-bit virtual address, 
	 4KB (212) pages, 
	 4-byte PTEs; 

- # pages = 232 ÷ 212 =  220 =1M 

- page table size = 1M × 4 bytes = 4MB
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4MB is much too large to fit in the MMU 
— insufficient registers and SRAM! 

Page table resides in main memory
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The translation process (aka page table walk) 
is performed by hardware (MMU). 

The kernel must initially populate, then 
continue to manage a process’s page table 

The kernel also populates a page table base 
register on context switches
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➊ VA: N

translation: hit

CPU

➌ PA: N'

Main 
Memory

Page 
Table

➋	page table  
	 walk

➍ data

Address 
Translator  

(part of MMU)
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➐ VA: N 
	 (retry)

Main 
Memory

Disk 
(swap space)

➎	data transfer➊ VA: N

translation: miss

CPU

➒ PA: N'

Page 
Table

Address 
Translator  

(part of MMU)

➋	page table  
	 walk

➓ data

➌ page fault kernel

➍	transfer control to kernel

➑

➏	PTE  
	 update
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kernel decides where to place page, and 
what to evict (if  memory is full) 

- e.g., using LRU replacement policy
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this system enables on-demand paging 
i.e., an active process need only be partly in 
memory (load rest from disk dynamically)
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but if  working set (of  active processes) 
exceeds available memory, we may have 
swap thrashing
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integration with caches?
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Q:	do caches use physical or virtual 	
addresses for lookups?
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Q:	do caches use physical or virtual 	
addresses for lookups? 

A:	caches typically use physical addresses



Computer 
ScienceScience

CPU
Process A Process B

Virtual Address 
Space

Virtual Address 
Space

0

M

L

0

M

N

X

Z

Cache

Address Data
L X
M Y
N Z

Virtual address based Cache

ambiguous!? ?
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CPU

Cache

Address Data
S X
Q Y
R Z

Process A Process B
Virtual Address 

Space
Virtual Address 

Space

0

M

L

0

M

N

Physical Memory
X S

Y Q
Z R

Physical address based Cache

X

Z

Y
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(miss)PAVA

Main Memory

process 
page table

CPU

Cache

page table walk

MMU 
(address 

translation 
unit)

(hit)
data

(update)

%*@$&#!!!
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saved by hardware: 

the Translation Lookaside Buffer (TLB) — a 
cache used solely for VPN→PPN lookups
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MMU
Main Memory

process 
page table

CPU

Cache

VA PA (miss)

TLB 
(VPN→PPN 

cache)

address 
translation 

unitonly if   
TLB miss!

page table walk

(hit)
data

(update)

TLB + Page table
(exercise for reader: revise earlier translation diagrams!)
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virtual page number (VPN) page offset

physical address

n-1 p p-1 0

valid tag physical page number (PPN)

virtual address

=

TLB Hit

valid tag data

=

Cache Hit
Data

byte offset
Cache

TLB
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TLB mappings are process specific — 
requires flush & reload on context switch 

- some architectures store PID (aka 
“virtual space” ID) in TLB
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Familiar caching problem: 

- TLB caches a few thousand mappings 

- vs. millions of  virtual pages per process!
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we can improve TLB hit rate by reducing 
the number of  pages … 

by increasing the size of  each page
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compute # pages for 32-bit memory for: 

- 1KB, 512KB, 4MB pages 

- 232 ÷ 210	= 222	 = 4M pages 

- 232 ÷ 219	= 213	 = 8K pages 

- 232 ÷ 222	= 210	 = 1K pages
(not bad!)
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Process A Process B
Virtual Memory Virtual Memory

Physical Memory

lots of  wasted space!
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Process A Process B
Virtual Memory Virtual Memory

Physical Memory
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increasing page size results in increased 
internal fragmentation and lower utilization
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i.e., TLB effectiveness needs to be 
balanced against memory utilization
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so what about 64-bit systems? 

264 = 16 Exabyte address space 

	 ≈ 4 billion x 4GB
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most modern implementations support a 
max of  248 (256TB) addressable space
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page table size (assuming 4K page size)? 

- # pages	 = 248 ÷ 212 = 236 

- PTE size	= 8 bytes (64 bits) 

- PT size 	 = 236 x 8 = 239 bytes
= 512GB
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512GB

(just for the virtual memory mapping structure)

(and we need one per process)
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(these things aren’t going to fit in memory)
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instead, use multi-level page tables: 

- split an address translation into two  
(or more) separate table lookups 

- unused parts of  the table don’t need to 
be in memory!
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7 6 5 4 3 2 1 0

1 1 0 1 1 0 1 0

“toy” memory system 
- 8 bit addresses 
- 32-byte pages

page offsetVPN

(unmapped)
PPN

(unmapped)
PPN

(unmapped)
(unmapped)
(unmapped)
(unmapped)

Page Table
7
6
5
4
3
2
1
0

all 8 PTEs 
must be in 
memory at 
all times
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7 6 5 4 3 2 1 0

1 1 0 1 1 0 1 0
page offset

1
0

(unmapped)
PPN

(unmapped)
PPN

3
2
1
0

(unmapped)
(unmapped)
(unmapped)
(unmapped)

3
2
1
0

page “directory”

“toy” memory system 
- 8 bit addresses 
- 32-byte pages

all unmapped;  
don’t need in memory!
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7 6 5 4 3 2 1 0

1 1 0 1 1 0 1 0
page offset

1
0

(unmapped)
PPN

(unmapped)
PPN

3
2
1
0

“toy” memory system 
- 8 bit addresses 
- 32-byte pages

∅
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IA-32 paging (4KB pages)

4-12 Vol. 3A

PAGING

Figure 4-2.  Linear-Address Translation to a 4-KByte Page using 32-Bit Paging

Figure 4-3.  Linear-Address Translation to a 4-MByte Page using 32-Bit Paging

0
Directory Table Offset

Page Directory

PDE with PS=0

CR3

Page Table

PTE

4-KByte Page

Physical Address

31 21 111222
Linear Address

32

10

12
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20

20

0
Directory Offset

Page Directory

PDE with PS=1

CR3

4-MByte Page

Physical Address

31 2122
Linear Address

10

22

32

18
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x86-64 paging (4KB pages)

4-28 Vol. 3A

PAGING

Figure 4-8.  Linear-Address Translation to a 4-KByte Page using IA-32e Paging
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