
Virtual Memory
CS 351: Systems Programming
Melanie CorneliusSlides and course

Slides and course content obtained with permission
from Prof. Michael Lee, <lee@iit.edu>

Computer
ScienceScience

REMINDERS:

1. Lab 02 -- Due 29 Oct (Sun)

2. Lab 03 -- Out today, due 5 Nov

3. Midterm exam: 3 Nov, review next
Wed.

4. Oral exam: discuss

Computer
ScienceScience

Midterm topics:

1. C (pointers, arrays, structs, functions)

2. Process: CS:APP 8.1-8.6

3. Mem hierarchy, cacheing CS:APP
6.1-6.6

4. Virtual mem, CS:APP 9.1-9.7

Computer
ScienceScience

registers

cache (SRAM)

main memory (DRAM)

local hard disk drive (HDD/SSD)

remote storage (networked drive / cloud)

previously: SRAM ⇔ DRAM

Computer
ScienceScience

registers

cache (SRAM)

main memory (DRAM)

local hard disk drive (HDD/SSD)

remote storage (networked drive / cloud)

next: DRAM ⇔ HDD, SSD, etc.
i.e., memory as a “cache” for disk

Computer
ScienceScience

main goals:

1. maximize memory throughput
2. maximize memory utilization

3. provide address space consistency
& memory protection to processes

Computer
ScienceScience

throughput = # bytes per second

- depends on access latencies (DRAM,
HDD, etc.) and “hit rate”

Computer
ScienceScience

utilization = fraction of allocated memory
that contains “user” data (aka payload)

- vs. metadata and other overhead
required for memory allocation

Computer
ScienceScience

address space consistency → provide a uniform
“view” of memory to each process

Computer
ScienceScience

address space consistency → provide a uniform
“view” of memory to each process

Kernel virtual memory

(code, data, heap, stack)

Memory mapped region for

shared libraries

Run-time heap
(created by malloc)

User stack

(created at runtime)

Unused0

%esp (stack pointer)

Memory

invisible to

user code

brk

0xc0000000

0x08048000

0x40000000

Read/write segment
(.data, .bss)

Read-only segment
(.init, .text, .rodata)

Loaded from the

executable file

0xffffffff

Computer
ScienceScience

memory protection → prevent processes from
directly accessing each other’s address space

Computer
ScienceScience

memory protection → prevent processes from
directly accessing each other’s address space

Kernel virtual memory

(code, data, heap, stack)

Memory mapped region for

shared libraries

Run-time heap
(created by malloc)

User stack

(created at runtime)

Unused0

%esp (stack pointer)

Memory

invisible to

user code

brk

0xc0000000

0x08048000

0x40000000

Read/write segment
(.data, .bss)

Read-only segment
(.init, .text, .rodata)

Loaded from the

executable file

0xffffffff

P0

Kernel virtual memory

(code, data, heap, stack)

Memory mapped region for

shared libraries

Run-time heap
(created by malloc)

User stack

(created at runtime)

Unused0

%esp (stack pointer)

Memory

invisible to

user code

brk

0xc0000000

0x08048000

0x40000000

Read/write segment
(.data, .bss)

Read-only segment
(.init, .text, .rodata)

Loaded from the

executable file

0xffffffff

P1

Kernel virtual memory

(code, data, heap, stack)

Memory mapped region for

shared libraries

Run-time heap
(created by malloc)

User stack

(created at runtime)

Unused0

%esp (stack pointer)

Memory

invisible to

user code

brk

0xc0000000

0x08048000

0x40000000

Read/write segment
(.data, .bss)

Read-only segment
(.init, .text, .rodata)

Loaded from the

executable file

0xffffffff

P2

Computer
ScienceScience

i.e., every process should be provided with
a managed, virtualized address space

Computer
ScienceScience

“memory addresses”: what are they, really?

Computer
ScienceScience

“physical” address: (byte) index into DRAM

data

CPU

address: N

Main Memory

N

(note: cache not shown)

Computer
ScienceScience

data

CPU

address: N

Main Memory

N

instructions executed by the CPU do not
refer directly to physical addresses!

Computer
ScienceScience

processes reference virtual addresses,

the CPU relays virtual address requests to
the memory management unit (MMU),

which are translated to physical addresses

Computer
ScienceScience

disk
address

CPU

Main Memory

“swap” space

MMU

address
translation

unit

physical
address

virtual address

(note: cache not shown)

Computer
ScienceScience

essential problem: translate request for a 	
virtual address → physical address

… this must be FAST, as every memory
access from the CPU must be translated

Computer
ScienceScience

both hardware/software are involved:

- MMU (hw) handles simple and fast
operations (e.g., table lookups)

- Kernel (sw) handles complex tasks
(e.g., eviction policy)

Computer
ScienceScience

§Virtual Memory
Implementations

Computer
ScienceScience

P0

0

Main Memory

0

1. simple relocation

B

N

N+B

Computer
ScienceScience

data

CPU

VA: N PA: N+B

MMU

relocation reg.

Main Memory

B

N

1. simple relocation

- per-process relocation address is loaded
by kernel on every context switch

B

Computer
ScienceScience

data

CPU

VA: N PA: N+B

MMU

relocation reg.

Main Memory

B

N

1. simple relocation

- problem: processes may easily overextend
their bounds and trample on each other

B

Computer
ScienceScience

data

CPU

VA: N PA: N+B

Main Memory

B
N

1. simple relocation

- incorporate a limit register to provide
memory protection

MMU

relocation reg.
B

limit reg.
L

assert (0 ≤ N ≤ L)

B+L
process
sandbox

Computer
ScienceScience

data

CPU

VA: N PA: N+B

Main Memory

B
N

1. simple relocation

- assertion failure triggers a fault, which
summons kernel (which signals process)

MMU

relocation reg.
B

limit reg.
L

assert (0 ≤ N ≤ L)

B+L
process
sandbox

Computer
ScienceScience

pros:

- simple & fast!

- provides protection

Computer
ScienceScience

but: 	available memory for mapping 	
depends on value of base address

i.e., address spaces are not consistent!

B

B

vs.

Main MemoryMain MemoryVirtual Memory
stack

code

data

heap

stack

code

data

heap

Virtual Memory
stack

code

data

heap

code

data

Computer
ScienceScience

also: 	all of a process below the address limit 	
must be loaded in memory

i.e., memory may be vastly under-utilized

Main Memory

B

possibly unused!

virtual
address
space

0

L stack

code

stack

code

Computer
ScienceScience

2. segmentation

- partition virtual address space into
multiple logical segments

- individually map them onto physical
memory with relocation registers

Computer
ScienceScience

MMU

Base Limit
0 B0 L0

1 B1 L1

2 B2 L2

3 B3 L3

Segment Table

Main Memory

B3

B3+L3

B2

B2+L2

B1

B1+L1

B0

B0+L0

Seg #0: Code
0

0

0

0
Seg #1: Data

Seg #3: Stack

Seg #2: Heap

Segmented Virtual
Address Space

virtual address has form seg#:offset

Computer
ScienceScience

MMU

Base Limit
0 B0 L0

1 B1 L1

2 B2 L2

3 B3 L3

Segment Table

VA: seg#:offset

data

assert (offset ≤ L2)

⊕
CPU

PA: offset + B2

Main Memory

B3

B3+L3

B2

B2+L2

B1

B1+L1

B0

B0+L0

Computer
ScienceScience

- implemented as MMU registers

- part of kernel-maintained, per-process
metadata (aka “process control block”)

- re-populated on each context switch

Base Limit
0 B0 L0

1 B1 L1

2 B2 L2

3 B3 L3

Segment Table

Computer
ScienceScience

pros:

- still very fast
- translation = register access & addition

- memory protection via limits

- segmented addresses improve consistency

Computer
ScienceScience

possibly unused!

Main Memory

B

virtual
address
space

0

L stack

code

stack

code

simple
relocation:

segmentation:
better!

Main Memory

0

stack

code

0 stack

code

virtual
address
space

Computer
ScienceScience

0

0

stack

code

virtual
address
space 2x

x
x

Main Memory

0

stack

code

0 stack

code

virtual
address
space

- variable segment sizes → memory fragmentation

- fragmentation potentially lowers utilization
- can fix through compaction, but expensive!

Computer
ScienceScience

3. paging

- partition virtual and physical address
spaces into uniformly sized pages

- virtual pages map onto physical pages

Computer
ScienceScience

stack

heap

data

code

physical memory

Computer
ScienceScience

stack

heap

data

code

- minimum mapping granularity = page

- not all of a given segment need be mapped

physical memory

Computer
ScienceScience

modified mapping problem:

- a virtual address is broken down into
virtual page number & page offset

- determine which physical page (if any)
a given virtual page is loaded into

- if physical page is found, use page
offset to access data

Computer
ScienceScience

VA:

PA:

Given page size = 2p bytes
 p

 p

 virtual page offset virtual page number

 physical page offset physical page number

Computer
ScienceScience

 physical page offset physical page number

address
translation

VA:

PA:

 virtual page offset virtual page number

Computer
ScienceScience

 physical page offset physical page number

VA:

PA:

 virtual page offset virtual page number

translation structure: page table
valid PPN

n

2n entriesindex

if invalid, page
is not mapped

Computer
ScienceScience

page table entries (PTEs) typically contain
additional metadata, e.g.:

- dirty (modified) bit

- access bits (shared or kernel-owned
pages may be read-only or inaccessible)

Computer
ScienceScience

e.g.,	32-bit virtual address,
	 4KB (212) page size,
	 4-byte PTE size;

- size of page table?

Computer
ScienceScience

e.g.,	32-bit virtual address,
	 4KB (212) pages,
	 4-byte PTEs;

- # pages = 232 ÷ 212 = 220 =1M

- page table size = 1M × 4 bytes = 4MB

Computer
ScienceScience

4MB is much too large to fit in the MMU
— insufficient registers and SRAM!

Page table resides in main memory

Computer
ScienceScience

The translation process (aka page table walk)
is performed by hardware (MMU).

The kernel must initially populate, then
continue to manage a process’s page table

The kernel also populates a page table base
register on context switches

Computer
ScienceScience

➊ VA: N

translation: hit

CPU

➌ PA: N'

Main
Memory

Page
Table

➋	page table
	 walk

➍ data

Address
Translator

(part of MMU)

Computer
ScienceScience

➐ VA: N
	 (retry)

Main
Memory

Disk
(swap space)

➎	data transfer➊ VA: N

translation: miss

CPU

➒ PA: N'

Page
Table

Address
Translator

(part of MMU)

➋	page table
	 walk

➓ data

➌ page fault kernel

➍	transfer control to kernel

➑

➏	PTE
	 update

Computer
ScienceScience

kernel decides where to place page, and
what to evict (if memory is full)

- e.g., using LRU replacement policy

Computer
ScienceScience

this system enables on-demand paging
i.e., an active process need only be partly in
memory (load rest from disk dynamically)

Computer
ScienceScience

but if working set (of active processes)
exceeds available memory, we may have
swap thrashing

Computer
ScienceScience

integration with caches?

Computer
ScienceScience

Q:	do caches use physical or virtual 	
addresses for lookups?

Computer
ScienceScience

Q:	do caches use physical or virtual 	
addresses for lookups?

A:	caches typically use physical addresses

Computer
ScienceScience

CPU
Process A Process B

Virtual Address
Space

Virtual Address
Space

0

M

L

0

M

N

X

Z

Cache

Address Data
L X
M Y
N Z

Virtual address based Cache

ambiguous!? ?

Computer
ScienceScience

CPU

Cache

Address Data
S X
Q Y
R Z

Process A Process B
Virtual Address

Space
Virtual Address

Space

0

M

L

0

M

N

Physical Memory
X S

Y Q
Z R

Physical address based Cache

X

Z

Y

Computer
ScienceScience

(miss)PAVA

Main Memory

process
page table

CPU

Cache

page table walk

MMU
(address

translation
unit)

(hit)
data

(update)

%*@$&#!!!

Computer
ScienceScience

saved by hardware:

the Translation Lookaside Buffer (TLB) — a
cache used solely for VPN→PPN lookups

Computer
ScienceScience

MMU
Main Memory

process
page table

CPU

Cache

VA PA (miss)

TLB
(VPN→PPN

cache)

address
translation

unitonly if
TLB miss!

page table walk

(hit)
data

(update)

TLB + Page table
(exercise for reader: revise earlier translation diagrams!)

Computer
ScienceScience

virtual page number (VPN) page offset

physical address

n-1 p p-1 0

valid tag physical page number (PPN)

virtual address

=

TLB Hit

valid tag data

=

Cache Hit
Data

byte offset
Cache

TLB

Computer
ScienceScience

TLB mappings are process specific —
requires flush & reload on context switch

- some architectures store PID (aka
“virtual space” ID) in TLB

Computer
ScienceScience

Familiar caching problem:

- TLB caches a few thousand mappings

- vs. millions of virtual pages per process!

Computer
ScienceScience

we can improve TLB hit rate by reducing
the number of pages …

by increasing the size of each page

Computer
ScienceScience

compute # pages for 32-bit memory for:

- 1KB, 512KB, 4MB pages

- 232 ÷ 210	= 222	 = 4M pages

- 232 ÷ 219	= 213	 = 8K pages

- 232 ÷ 222	= 210	 = 1K pages
(not bad!)

Computer
ScienceScience

Process A Process B
Virtual Memory Virtual Memory

Physical Memory

lots of wasted space!

Computer
ScienceScience

Process A Process B
Virtual Memory Virtual Memory

Physical Memory

Computer
ScienceScience

increasing page size results in increased
internal fragmentation and lower utilization

Computer
ScienceScience

i.e., TLB effectiveness needs to be
balanced against memory utilization

Computer
ScienceScience

so what about 64-bit systems?

264 = 16 Exabyte address space

	 ≈ 4 billion x 4GB

Computer
ScienceScience

most modern implementations support a
max of 248 (256TB) addressable space

Computer
ScienceScience

page table size (assuming 4K page size)?

- # pages	 = 248 ÷ 212 = 236

- PTE size	= 8 bytes (64 bits)

- PT size 	 = 236 x 8 = 239 bytes
= 512GB

Computer
ScienceScience

512GB

(just for the virtual memory mapping structure)

(and we need one per process)

Computer
ScienceScience

(these things aren’t going to fit in memory)

Computer
ScienceScience

instead, use multi-level page tables:

- split an address translation into two
(or more) separate table lookups

- unused parts of the table don’t need to
be in memory!

Computer
ScienceScience

7 6 5 4 3 2 1 0

1 1 0 1 1 0 1 0

“toy” memory system
- 8 bit addresses
- 32-byte pages

page offsetVPN

(unmapped)
PPN

(unmapped)
PPN

(unmapped)
(unmapped)
(unmapped)
(unmapped)

Page Table
7
6
5
4
3
2
1
0

all 8 PTEs
must be in
memory at
all times

Computer
ScienceScience

7 6 5 4 3 2 1 0

1 1 0 1 1 0 1 0
page offset

1
0

(unmapped)
PPN

(unmapped)
PPN

3
2
1
0

(unmapped)
(unmapped)
(unmapped)
(unmapped)

3
2
1
0

page “directory”

“toy” memory system
- 8 bit addresses
- 32-byte pages

all unmapped;
don’t need in memory!

Computer
ScienceScience

7 6 5 4 3 2 1 0

1 1 0 1 1 0 1 0
page offset

1
0

(unmapped)
PPN

(unmapped)
PPN

3
2
1
0

“toy” memory system
- 8 bit addresses
- 32-byte pages

∅

Computer
ScienceScience

IA-32 paging (4KB pages)

4-12 Vol. 3A

PAGING

Figure 4-2. Linear-Address Translation to a 4-KByte Page using 32-Bit Paging

Figure 4-3. Linear-Address Translation to a 4-MByte Page using 32-Bit Paging

0
Directory Table Offset

Page Directory

PDE with PS=0

CR3

Page Table

PTE

4-KByte Page

Physical Address

31 21 111222
Linear Address

32

10

12

10

20

20

0
Directory Offset

Page Directory

PDE with PS=1

CR3

4-MByte Page

Physical Address

31 2122
Linear Address

10

22

32

18

Computer
ScienceScience

x86-64 paging (4KB pages)

4-28 Vol. 3A

PAGING

Figure 4-8. Linear-Address Translation to a 4-KByte Page using IA-32e Paging

Directory Ptr

PTE

Linear Address

Page Table

PDPTE

CR3

39 38

Pointer Table

9
9

40

12
9

40

4-KByte Page

Offset

Physical Addr

PDE with PS=0

Table
011122021

Directory
30 29

Page-Directory-

Page-Directory

PML4
47

9

PML4E

40

40

40

